Abstract
The Larkin-Khmelnitskii theory of uniaxial ferroelectrics is used to derive further predictions for the critical behavior of ferroelectrics, including "local properties" and transport properties. Special attention is paid to the experimental observability of the predicted logarithmic correction terms. In particular, in the expansion of the electric field E in powers of the dielectric polarization $P$, i.e., $E=P\ensuremath{\Sigma}{i}^{}{f}_{2i}(T){P}^{2i}$, the temperature dependence of the coefficients ${f}_{2}\ensuremath{\propto}{|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\ensuremath{-}1}$ and ${f}_{4}\ensuremath{\propto}{(\frac{T}{{T}_{c}\ensuremath{-}1})}^{\ensuremath{-}1}{|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\ensuremath{-}\frac{4}{3}}$ is obtained, deviating significantly from ${f}_{2}=\mathrm{const}$ and ${f}_{4}=\mathrm{const}$ of the simple Landau theory. We argue that the nonanalytic behavior of ${f}_{2}$ could be measured more easily than either the logarithmic correction in ${f}_{0}\ensuremath{\propto}(\frac{T}{{T}_{c}\ensuremath{-}1}){|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\ensuremath{-}\frac{1}{3}}$ or the specific-heat singularity $C\ensuremath{\propto}{|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\frac{1}{3}}$. We show that recent experiments on tri-glycine sulfate by Ehses and M\"user are in good agreement with our predictions. Moreover, we calculate the temperature dependence of the critical contribution to the Debye-Waller-factor exponent $W$ which corresponds to that of the electron-paramagnetic-resonance linewidth in the "slow-motion regime." We find ${W}_{\mathrm{crit}}\ensuremath{\propto}(\frac{T}{{T}_{c}\ensuremath{-}1})\ifmmode\times\else\texttimes\fi{}{|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\frac{1}{3}}$ above ${T}_{c}$ and ${W}_{\mathrm{crit}}\ensuremath{\propto}(\frac{1\ensuremath{-}T}{{T}_{c}}){|\mathrm{ln}(\frac{T}{{T}_{c}\ensuremath{-}1})|}^{\frac{2}{3}}$ below ${T}_{c}$. A reinterpretation of available experiments is suggested. Finally, we obtain the temperature dependence of the critical contributions to the $\mathrm{dc}$ electrical resistivity $\ensuremath{\rho}$ both for ferroelectrics and other structural phase transitions. While $\frac{d\ensuremath{\rho}}{\mathrm{dT}}$ is shown to have the same singularity as the specific heat in ferroelectrics both below ${T}_{c}$ and above ${T}_{c}$ we obtain in the other cases $\frac{d\ensuremath{\rho}}{\mathrm{dT}}\ensuremath{\propto}{(\frac{1\ensuremath{-}T}{{T}_{c}})}^{2\ensuremath{\beta}\ensuremath{-}1}$ for $T<{T}_{c}$, and $\frac{d\ensuremath{\rho}}{\mathrm{dT}}\ensuremath{\propto}C\ensuremath{\propto}{(\frac{T}{{T}_{c}\ensuremath{-}1})}^{\ensuremath{-}\ensuremath{\alpha}}$ for $T>{T}_{c}$, where $\ensuremath{\beta}$ is the orderparameter exponent. A discussion of a recent experiment in SnTe is given, and our results for the electrical resistivity of semiconducting ferroelectrics are compared with those for ferromagnets and antiferromagnets.
Keywords
Affiliated Institutions
Related Publications
Logarithmic Divergence of both In-Plane and Out-of-Plane Normal-State Resistivities of Superconducting<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Sr</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>in the Zero-Temperature Limit
The low-temperature normal-state resistivities of underdoped ${\mathrm{La}}_{2\ensuremath{-}x}{\mathrm{Sr}}_{x}\mathrm{Cu}{\mathrm{O}}_{4}$ crystals with ${T}_{c}$ of 20 and 35 ...
Flicker (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:mfrac></mml:math>) noise: Equilibrium temperature and resistance fluctuations
We have measured the $\frac{1}{f}$ voltage noise in continuous metal films. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by ${10}^{5}$...
Correlation Energy of an Electron Gas with a Slowly Varying High Density
The correlation energy (the exact energy minus the Hartree-Fock energy) of an electron gas with a high and slowly varying density is examined. The term proportional to the squar...
Critical Wetting in Three Dimensions
A critical wetting (or interface delocalization) transition occurs when the interface between two fluid phases becomes infinitesimally bound to an attracting wall. It is shown t...
Hall effect and resistivity of high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="italic">T</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>oxides in the bipolaron model
We discuss the Hall effect and resistivity above ${\mathit{T}}_{\mathit{c}}$, using a variant of the bipolaron theory which takes into account Anderson localization of the boson...
Publication Info
- Year
- 1976
- Type
- article
- Volume
- 13
- Issue
- 11
- Pages
- 4890-4898
- Citations
- 61
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.13.4890