Abstract

A critical wetting (or interface delocalization) transition occurs when the interface between two fluid phases becomes infinitesimally bound to an attracting wall. It is shown that the critical exponents at this transition depend continuously on the parameter $\ensuremath{\omega}\ensuremath{\equiv}\frac{{k}_{\mathrm{B}}{T}_{w}}{(4\ensuremath{\pi}{{\ensuremath{\xi}}_{b}}^{2}\ensuremath{\sigma})}$, where $\ensuremath{\sigma}$ is the surface tension of the free interface, ${\ensuremath{\xi}}_{b}$ is the bulk correlation length in the attracted fluid phase, and ${T}_{w}$ is the transition temperature.

Keywords

WettingPhysicsWetting transitionOmegaSurface tensionCondensed matter physicsDelocalized electronPhase transitionCritical exponentSigmaThermodynamicsQuantum mechanics

Affiliated Institutions

Related Publications

Universal relations among critical amplitude. Calculations up to order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>for systems with continuous symmetry

A general derivation of the two-scale-factor universality is given using the renormalized ${\ensuremath{\varphi}}^{4}$ theory. As a consequence ten universal relations among cri...

1976 Physical review. B, Solid state 147 citations

Critical point wetting

It is shown that in any two-phase mixture of fluids near their critical point, contact angles against any third phase become zero in that one of the critical phases completely w...

1977 The Journal of Chemical Physics 1891 citations

Publication Info

Year
1983
Type
article
Volume
50
Issue
18
Pages
1387-1390
Citations
274
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

274
OpenAlex

Cite This

E. Brézin, B. I. Halperin, Stanislas Leibler (1983). Critical Wetting in Three Dimensions. Physical Review Letters , 50 (18) , 1387-1390. https://doi.org/10.1103/physrevlett.50.1387

Identifiers

DOI
10.1103/physrevlett.50.1387