Abstract
Given a random matrix, what condition number should be expected? This paper presents a proof that for real or complex $n \times n$ matrices with elements from a standard normal distribution, the expected value of the log of the 2-norm condition number is asymptotic to $\log n$ as $n \to \infty$. In fact, it is roughly $\log n + 1.537$ for real matrices and $\log n + 0.982$ for complex matrices as $n \to \infty$. The paper discusses how the distributions of the condition numbers behave for large n for real or complex and square or rectangular matrices. The exact distributions of the condition numbers of $2 \times n$ matrices are also given. Intimately related to this problem is the distribution of the eigenvalues of Wishart matrices. This paper studies in depth the largest and smallest eigenvalues, giving exact distributions in some cases. It also describes the behavior of all the eigenvalues, giving an exact formula for the expected characteristic polynomial.
Keywords
Related Publications
The Theory of Matrices
Volume 2: XI. Complex symmetric, skew-symmetric, and orthogonal matrices: 1. Some formulas for complex orthogonal and unitary matrices 2. Polar decomposition of a complex matrix...
Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks.
We describe an approach to analyzing protein sequence databases that, starting from a single uncharacterized sequence or group of related sequences, generates blocks of conserve...
Empirical graph Laplacian approximation of Laplace–Beltrami operators: Large sample results
Let ${M}$ be a compact Riemannian submanifold of ${{\\bf R}^m}$ of dimension\n$\\scriptstyle{d}$ and let ${X_1,...,X_n}$ be a sample of i.i.d. points in ${M}$\nwith uniform dist...
Multivariate Smoothing Spline Functions
Given data $z_i = g(t_i ) + \varepsilon _i , 1 \leqq i \leqq n$, where g is the unknown function, the $t_i $ are known d-dimensional variables in a domain $\Omega $, and the $\v...
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (rand...
Publication Info
- Year
- 1988
- Type
- article
- Volume
- 9
- Issue
- 4
- Pages
- 543-560
- Citations
- 1294
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1137/0609045