Abstract
A variational method for forcing the exchange-correlation potential in density-functional theory (DFT) to have the correct asymptotic decay is developed. The resulting exchange-correlation potentials are much improved while the total energies remain essentially the same, compared with conventional density-functional theory calculations. The highest occupied orbital energies from the asymptotically corrected exchange-correlation potentials are found to provide significantly more accurate approximations to the ionization potential (for a neutral molecule) and the electron affinity (for an anion) than those from conventional calculations, although the results are usually inferior to direct methods by computing energy differences. Extending recent results from exchange-only DFT, we show that exact exchange-correlation potential is nonuniform asymptotically. Correcting the asymptotic decay of approximate exchange-correlation potentials towards the exact functional form binds the highest occupied orbitals for atomic and molecular anions, which supports the use of DFT calculations for negatively charged molecular species. With this technique, even hybrid functionals have local exchange-correlation potentials, effectively removing the largest objection to including these functionals in the panoply of Kohn–Sham DFT methods.
Keywords
Affiliated Institutions
Related Publications
Density-functional thermochemistry. III. The role of exact exchange
Despite the remarkable thermochemical accuracy of Kohn–Sham density-functional theories with gradient corrections for exchange-correlation [see, for example, A. D. Becke, J. Che...
Exact Kohn-Sham scheme based on perturbation theory
An exact formal Kohn-Sham scheme is derived with the help of perturbation theory. Through the introduction of a basis set this Kohn-Sham scheme can be used to perform, in princi...
Exchange-correlation potential with correct asymptotic behavior
In this work we analyze the properties of the exchange-correlation potential in the Kohn-Sham form of density-functional theory, which leads to requirements for approximate pote...
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately,...
Exchange functionals and potentials
The commonly used exchange-correlation functionals of density functional theory and their potentials are examined numerically following the first such investigation by Perdew. T...
Publication Info
- Year
- 2003
- Type
- article
- Volume
- 119
- Issue
- 6
- Pages
- 2978-2990
- Citations
- 97
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1590631