Abstract
Current gradient-corrected density-functional approximations for the exchange energies of atomic and molecular systems fail to reproduce the correct 1/r asymptotic behavior of the exchange-energy density. Here we report a gradient-corrected exchange-energy functional with the proper asymptotic limit. Our functional, containing only one parameter, fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Keywords
Affiliated Institutions
Related Publications
Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series
Starting from very accurate many-body wave functions, we have constructed essentially exact densities, exchange-correlation potentials, and components of the total energy for he...
Density-functional thermochemistry. III. The role of exact exchange
Despite the remarkable thermochemical accuracy of Kohn–Sham density-functional theories with gradient corrections for exchange-correlation [see, for example, A. D. Becke, J. Che...
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
Generalized gradient approximations (GGA’s) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang...
Density-functional theory calculations with correct long-range potentials
A variational method for forcing the exchange-correlation potential in density-functional theory (DFT) to have the correct asymptotic decay is developed. The resulting exchange-...
Density functionals for the strong-interaction limit
The strong-interaction limit of density-functional (DF) theory is simple and provides information required for an accurate resummation of DF perturbation theory. Here we derive ...
Publication Info
- Year
- 1988
- Type
- article
- Volume
- 38
- Issue
- 6
- Pages
- 3098-3100
- Citations
- 52422
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.38.3098