Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling

1991 Physical review. B, Condensed matter 1,428 citations

Abstract

For a uniform electron gas of density n=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$=3/4\ensuremath{\pi}${\mathit{r}}_{\mathit{s}}^{3}$=\ensuremath{\pi}${\mathit{k}}_{\mathit{s}}^{6}$/192 and spin polarization \ensuremath{\zeta}=(${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$-${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$)/n, we study the Fourier transform \ensuremath{\rho}${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}_{\mathit{c}}$(k,${\mathit{r}}_{\mathit{s}}$,\ensuremath{\zeta}) of the correlation hole, as well as the correlation energy ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$,\ensuremath{\zeta})=${\mathcal{F}}_{0}^{\mathrm{\ensuremath{\infty}}}$dk \ensuremath{\rho}${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}_{\mathit{c}}$/\ensuremath{\pi}. In the high-density (${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0) limit, we find a simple scaling relation ${\mathit{k}}_{\mathit{s}}$\ensuremath{\rho}${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}_{\mathit{c}}$/\ensuremath{\pi}${\mathit{g}}^{2}$\ensuremath{\rightarrow}f(z,\ensuremath{\zeta}), where z=k/${\mathit{gk}}_{\mathit{s}}$, g=[(1+\ensuremath{\zeta}${)}^{2/3}$+(1-\ensuremath{\zeta}${)}^{2/3}$]/2, and f(z,1)=f(z,0). The function f(z,\ensuremath{\zeta}) is only weakly \ensuremath{\zeta} dependent, and its small-z expansion -3z/${\mathrm{\ensuremath{\pi}}}^{2}$+4 \ensuremath{\surd}3 ${\mathrm{z}}^{2}$/${\mathrm{\ensuremath{\pi}}}^{2}$+... is also the exact small-wave-vector (k\ensuremath{\rightarrow}0) expansion for any ${\mathit{r}}_{\mathit{s}}$ or \ensuremath{\zeta}. Motivated by these considerations, and by a discussion of the large-wave-vector and low-density limits, we present two Pad\'e representations for \ensuremath{\rho}${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}_{\mathit{c}}$ at any k, ${\mathit{r}}_{\mathit{s}}$, or \ensuremath{\zeta}, one within and one beyond the random-phase approximation (RPA). We also show that \ensuremath{\rho}\ifmmode\bar\else\textasciimacron\fi{} $_{\mathit{c}}^{\mathrm{RPA}}$ obeys a generalization of Misawa's spin-scaling relation for ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}^{\mathrm{RPA}}$, and that the low-density (${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}\ensuremath{\infty}) limit of ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}^{\mathrm{RPA}}$ is \ensuremath{\sim}${\mathit{r}}_{\mathit{s}}^{\mathrm{\ensuremath{-}}3/4}$.

Keywords

PhysicsEnergy (signal processing)Mathematical physicsCondensed matter physicsQuantum mechanics

Affiliated Institutions

Related Publications

Publication Info

Year
1991
Type
article
Volume
44
Issue
24
Pages
13298-13307
Citations
1428
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1428
OpenAlex

Cite This

Yue Wang, John P. Perdew (1991). Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical review. B, Condensed matter , 44 (24) , 13298-13307. https://doi.org/10.1103/physrevb.44.13298

Identifiers

DOI
10.1103/physrevb.44.13298