Abstract
It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierarchical image models, designed to accommodate arbitrary contextual relationships, and we build a demonstration system for reading Massachusetts license plates in an image set collected at Logan Airport. The demonstration system detects and correctly reads more than 98% of the plates, with a negligible rate of false detection. Unlike a formal grammar, the architecture of a composition machine does not exclude the sharing of sub-parts among multiple entities, and does not limit interpretations to single trees (e.g. a scene can have multiple license plates, or no plates at all). In this sense, the architecture is more like a general Bayesian network than a formal grammar. On the other hand, unlike a Bayesian network, the distribution is non-Markovian, and therefore more like a probabilistic context-sensitive grammar. The conceptualization and construction of a composition machine is facilitated by its formulation as the result of a series of non-Markovian perturbations of a "Markov backbone."
Keywords
Affiliated Institutions
Related Publications
Going deeper with convolutions
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Sca...
A general framework for object detection
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representat...
Object Detection With Deep Learning: A Review
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection ...
CODA: convergence diagnosis and output analysis for MCMC
[1st paragraph] At first sight, Bayesian inference with Markov Chain Monte Carlo (MCMC) appears to be straightforward. The user defines a full probability model, perhaps using o...
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 2
- Pages
- 2145-2152
- Citations
- 169
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2006.86