Abstract
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representation of an object class derived from a statistical analysis of the class instances. By learning an object class in terms of a subset of an overcomplete dictionary of wavelet basis functions, we derive a compact representation of an object class which is used as an input to a support vector machine classifier. This representation overcomes both the problem of in-class variability and provides a low false detection rate in unconstrained environments. We demonstrate the capabilities of the technique in two domains whose inherent information content differs significantly. The first system is face detection and the second is the domain of people which, in contrast to faces, vary greatly in color, texture, and patterns. Unlike previous approaches, this system learns from examples and does not rely on any a priori (hand-crafted) models or motion-based segmentation. The paper also presents a motion-based extension to enhance the performance of the detection algorithm over video sequences. The results presented here suggest that this architecture may well be quite general.
Keywords
Affiliated Institutions
Related Publications
Normalized cuts and image segmentation
We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features and their consistencies in the image data, our approach...
FCOS: Fully Convolutional One-Stage Object Detection
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all stat...
Focal Loss for Dense Object Detection
The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations...
MobileNetV2: Inverted Residuals and Linear Bottlenecks
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as acr...
Deep High-Resolution Representation Learning for Visual Recognition
High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-...
Publication Info
- Year
- 2002
- Type
- article
- Pages
- 555-562
- Citations
- 1428
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/iccv.1998.710772