Abstract
Preface to the Fourth Edition. 1 Biomechanics as an Interdiscipline. 1.0 Introduction. 1.1 Measurement, Description, Analysis, and Assessment. 1.2 Biomechanics and its Relationship with Physiology and Anatomy. 1.3 Scope of the Textbook. 1.4 References. 2 Signal Processing. 2.0 Introduction. 2.1 Auto- and Cross-Correlation Analyses. 2.2 Frequency Analysis. 2.3 Ensemble Averaging of Repetitive Waveforms. 2.4 References. 3 Kinematics. 3.0 Historical Development and Complexity of Problem. 3.1 Kinematic Conventions. 3.2 Direct Measurement Techniques. 3.3 Imaging Measurement Techniques. 3.4 Processing of Raw Kinematic Data. 3.5 Calculation of Other Kinematic Variables. 3.6 Problems Based on Kinematic Data. 3.7 References. 4 Anthropometry. 4.0 Scope of Anthropometry in Movement Biomechanics. 4.1 Density, Mass, and Inertial Properties. 4.2 Direct Experimental Measures. 4.3 Muscle Anthropometry. 4.4 Problems Based on Anthropometric Data. 4.5 References. 5 Kinetics: Forces and Moments of Force. 5.0 Biomechanical Models. 5.1 Basic Link-Segment Equations-the Free-Body Diagram. 5.2 Force Transducers and Force Plates. 5.3 Bone-on-Bone Forces During Dynamic Conditions. 5.4 Problems Based on Kinetic and Kinematic Data. 5.5 References. 6 Mechanical Work, Energy, and Power. 6.0 Introduction. 6.1 Efficiency. 6.2 Forms of Energy Storage. 6.3 Calculation of Internal and External Work. 6.4 Power Balances at Joints and Within Segments. 6.5 Problems Based on Kinetic and Kinematic Data. 6.6 References. 7 Three-Dimensional Kinematics and Kinetics. 7.0 Introduction. 7.1 Axes Systems. 7.2 Marker and Anatomical Axes Systems. 7.3 Determination of Segment Angular Velocities and Accelerations. 7.4 Kinetic Analysis of Reaction Forces and Moments. 7.5 Suggested Further Reading. 7.6 References. 8 Synthesis of Human Movement-Forward Solutions. 8.0 Introduction. 8.1 Review of Forward Solution Models. 8.2 Mathematical Formulation. 8.3 System Energy. 8.4 External Forces and Torques. 8.5 Designation of Joints. 8.6 Illustrative Example. 8.7 Conclusions. 8.8 References. 9 Muscle Mechanics. 9.0 Introduction. 9.1 Force-Length Characteristics of Muscles. 9.2 Force-Velocity Characteristics. 9.3 Muscle Modeling. 9.4 References. 10 Kinesiological Electromyography. 10.0 Introduction. 10.1 Electrophysiology of Muscle Contraction. 10.2 Recording of the Electromyogram. 10.3 Processing of the Electromyogram,. 10.4 Relationship between Electromyogram and Biomechanical Variables. 10.5 References. 11 Biomechanical Movement Synergies. 11.0 Introduction. 11.1 The Support Moment Synergy. 11.2 Medial/Lateral and Anterior/Posterior Balance in Standing. 11.3 Dynamic Balance during Walking. 11.4 References. APPENDICES. A. Kinematic, Kinetic, and Energy Data. Figure A.1 Walking Trial-Marker Locations and Mass and Frame Rate Information. Table A.1 Raw Coordinate Data (cm). Table A.2( a ) Filtered Marker Kinematics-Rib Cage and Greater Trochanter (Hip). Table A.2( b ) Filtered Marker Kinematics-Femoral Lateral Epicondyle (Knee) and Head of Fibula. Table A.2( c ) Filtered Marker Kinematics-Lateral Malleolus (Ankle) and Heel. Table A.2( d ) Filtered Marker Kinematics-Fifth Metatarsal and Toe. Table A.3( a ) Linear and Angular Kinematics-Foot. Table A.3( b ) Linear and Angular Kinematics-Leg. Table A.3( c ) Linear and Angular Kinematics-Thigh. Table A.3( d ) Linear and Angular Kinematics-1/2 HAT. Table A.4 Relative Joint Angular Kinematics-Ankle, Knee, and Hip. Table A.5( a ) Reaction Forces and Moments of Force-Ankle and Knee. Table A.5( b ) Reaction Forces and Moments of Force-Hip. Table A.6 Segment Potential, Kinetic, and Total Energies-Foot, Leg, Thigh, and1/2 HAT. Table A.7 Power Generation/Absorption and Transfer-Ankle, Knee, and Hip. B. Units and Definitions Related to Biomechanical and Electromyographical Measurements. Table B.1 Base SI Units. Table B.2 Derived SI Units. Index.
Keywords
Affiliated Institutions
Related Publications
Musculoskeletal pain in the obese: a comparison with a general population and long-term changes after conventional and surgical obesity treatment
Obesity is associated with musculoskeletal pain and osteoarthritis. This study compares the prevalence of work-restricting musculoskeletal pain in an obese and a general populat...
Fundamentals for Control of Robotic Manipulators
Robotic systems kinematics for manipulator joints, links and gripper inverse solution to kinematic equations angular/translational velocity and force/torque relations in joint a...
Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum
view Abstract Citations (546) References (41) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Dark Halos Formed via Dissipationless Collapse. I....
The Effect of Static Stretch and Dynamic Range of Motion Training on the Flexibility of the Hamstring Muscles
To date, limited information exists describing a relatively new stretching technique, dynamic range of motion (DROM). The purpose of this study was to compare the effects of DRO...
OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement
Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to...
Publication Info
- Year
- 1990
- Type
- article
- Volume
- 28
- Issue
- 04
- Pages
- 28-2135
- Citations
- 8506
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.5860/choice.28-2135