Abstract

The widely used support vector machine (SVM) method has shown to yield very good results in supervised classification problems. Other methods such as classification trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in data mining. In this work, we propose an SVM-based method that automatically detects the most important predictor variables and the role they play in the classifier. In particular, the proposed method is able to detect those values and intervals that are critical for the classification. The method involves the optimization of a linear programming problem in the spirit of the Lasso method with a large number of decision variables. The numerical experience reported shows that a rather direct use of the standard column generation strategy leads to a classification method that, in terms of classification ability, is competitive against the standard linear SVM and classification trees. Moreover, the proposed method is robust; i.e., it is stable in the presence of outliers and invariant to change of scale or measurement units of the predictor variables. When the complexity of the classifier is an important issue, a wrapper feature selection method is applied, yielding simpler but still competitive classifiers.

Keywords

Support vector machineInterpretabilityFeature selectionArtificial intelligenceComputer scienceOutlierMachine learningClassifier (UML)Pattern recognition (psychology)Linear classifierData miningStructured support vector machineLinear programmingMathematicsAlgorithm

Affiliated Institutions

Related Publications

Factorization Machines

In this paper, we introduce Factorization Machines (FM) which are a new model class that combines the advantages of Support Vector Machines (SVM) with factorization models. Like...

2010 2956 citations

Publication Info

Year
2009
Type
article
Volume
22
Issue
1
Pages
154-167
Citations
36
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

36
OpenAlex

Cite This

Emilio Carrizosa, Belén Martín-Barragán, Dolores Romero Morales (2009). Binarized Support Vector Machines. INFORMS journal on computing , 22 (1) , 154-167. https://doi.org/10.1287/ijoc.1090.0317

Identifiers

DOI
10.1287/ijoc.1090.0317