Abstract

In this paper, we introduce Factorization Machines (FM) which are a new model class that combines the advantages of Support Vector Machines (SVM) with factorization models. Like SVMs, FMs are a general predictor working with any real valued feature vector. In contrast to SVMs, FMs model all interactions between variables using factorized parameters. Thus they are able to estimate interactions even in problems with huge sparsity (like recommender systems) where SVMs fail. We show that the model equation of FMs can be calculated in linear time and thus FMs can be optimized directly. So unlike nonlinear SVMs, a transformation in the dual form is not necessary and the model parameters can be estimated directly without the need of any support vector in the solution. We show the relationship to SVMs and the advantages of FMs for parameter estimation in sparse settings. On the other hand there are many different factorization models like matrix factorization, parallel factor analysis or specialized models like SVD++, PITF or FPMC. The drawback of these models is that they are not applicable for general prediction tasks but work only with special input data. Furthermore their model equations and optimization algorithms are derived individually for each task. We show that FMs can mimic these models just by specifying the input data (i.e. the feature vectors). This makes FMs easily applicable even for users without expert knowledge in factorization models.

Keywords

Computer scienceSupport vector machineFactorizationMatrix decompositionArtificial intelligenceFeature (linguistics)Feature vectorRecommender systemMachine learningNonlinear systemData miningAlgorithm

Affiliated Institutions

Related Publications

Publication Info

Year
2010
Type
article
Citations
2956
Access
Closed

External Links

Social Impact

Altmetric
PlumX Metrics

Social media, news, blog, policy document mentions

Citation Metrics

2956
OpenAlex

Cite This

Steffen Rendle (2010). Factorization Machines. . https://doi.org/10.1109/icdm.2010.127

Identifiers

DOI
10.1109/icdm.2010.127