Abstract
A new internally contracted direct multiconfiguration–reference configuration interaction (MRCI) method is described which allows the use of much larger reference spaces than any previous MRCI method. The configurations with two electrons in the external orbital space are generated by applying pair excitation operators to the reference wave function as a whole, while the singly external and internal configurations are standard uncontracted spin eigenfunctions. A new efficient and simple method for the calculation of the coupling coefficients is used, which is well suited for vector machines, and allows the recalculation of all coupling coefficients each time they are needed. The vector H⋅c is computed partly in a nonorthogonal configuration basis. In order to test the accuracy of the internally contracted wave functions, benchmark calculations have been performed for F−, H2O, NH2, CH2, CH3, OH, NO, N2, and O2 at various geometries. The deviations of the energies obtained with internally contracted and uncontracted MRCI wave functions are mostly smaller than 1 mH and typically 3–5 times smaller than the deviations between the uncontracted MRCI and the full CI. Dipole moments, electric dipole polarizabilities, and electronic dipole transition moments calculated with uncontracted and contracted MRCI wave functions also are found to be in close agreement. The efficiency of the method is demonstrated in large scale calculations for the CN, NH3, CO2, and Cr2 molecules. In these calculations up to 3088 reference configurations and up to 154 orbitals were employed. The biggest calculation is equivalent to an uncontracted MRCI with more than 78 million configurations.
Keywords
Affiliated Institutions
Related Publications
Polarization CI wavefunctions: the valence states of the NH radical
The polarization configuration interaction (POL–CI) wavefunction is described. Calculations are reported for the X 3Σ−, a 1Δ, b 1Σ+, A 3Π, and c 1Π states of the NH molecules in...
One-Electron Properties of Near-Hartree–Fock Wavefunctions. I. Water
Self-consistent-field calculations are reported for the ground state of the water molecule in a contracted and uncontracted Gaussian basis set. The uncontracted set is shown to ...
Self-Consistent Molecular Orbital Methods. VI. Energy Optimized Gaussian Atomic Orbitals
Minimal basis atomic orbitals expressed as sums of N Gaussian functions are presented for hydrogen and for the first row atoms boron to fluorine. The expansion coefficients and ...
A multiconfiguration self-consistent reaction field response method
A multiconfiguration self-consistent reaction field linear response method is presented for calculating frequency-dependent molecular properties as well as electronic excitation...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons
A formalism is developed for obtaining ab initio effective core potentials from numerical Hartree–Fock wavefunctions and such potentials are presented for C, N, O, F, Cl, Fe, Br...
Publication Info
- Year
- 1988
- Type
- article
- Volume
- 89
- Issue
- 9
- Pages
- 5803-5814
- Citations
- 3796
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.455556