Abstract

Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.

Keywords

Computer scienceEdge computingEnhanced Data Rates for GSM EvolutionDistributed computingResource (disambiguation)Resource management (computing)Computer networkTelecommunications

Affiliated Institutions

Related Publications

Publication Info

Year
2019
Type
article
Volume
37
Issue
6
Pages
1205-1221
Citations
2030
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2030
OpenAlex
152
Influential
1702
CrossRef

Cite This

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis et al. (2019). Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications , 37 (6) , 1205-1221. https://doi.org/10.1109/jsac.2019.2904348

Identifiers

DOI
10.1109/jsac.2019.2904348
arXiv
1804.05271

Data Quality

Data completeness: 88%