Abstract
A simple level of ab initio molecular orbital theory with a split-valence shell basis with d-type polarization functions (6–31G*) is used to predict equilibrium geometries for the ground and some low-lying excited states of AHn molecules and cations where A is carbon, nitrogen, oxygen or fluorine. The results are shown to be close to the limit for single determinant wave functions in cases where corresponding computations with more extensive bases are available. Comparison with experimental results also shows good agreement although a systematic underestimation of bond lengths up to 3 per cent is evident. For systems where no experimental data are available, the results provide predictions of equilibrium geometry.
Keywords
Affiliated Institutions
Related Publications
Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms...
Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements
The 6-31G* and 6-31G** basis sets previously introduced for first-row atoms have been extended through the second-row of the periodic table. Equilibrium geometries for one-heavy...
Structures of simple anions from <i>ab initio</i> molecular orbital calculations
Ab initio molecular orbital theory with the minimal STO-3G and split-valence 4-31G basis sets is used to obtain geometries of 18 anions:OH-, NH2-, HF2-, BH4-, BF4-, C22-, CN-, N...
The performance of a family of density functional methods
The results of a systematic study of molecular properties by density functional theory (DFT) are presented and discussed. Equilibrium geometries, dipole moments, harmonic vibrat...
Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules
An extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first-row atoms carbon to fluorine. In t...
Publication Info
- Year
- 1974
- Type
- article
- Volume
- 27
- Issue
- 1
- Pages
- 209-214
- Citations
- 2216
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/00268977400100171