Abstract
An extended basis set of atomic functions expressed as fixed linear combinations of Gaussian functions is presented for hydrogen and the first-row atoms carbon to fluorine. In this set, described as 4–31 G, each inner shell is represented by a single basis function taken as a sum of four Gaussians and each valence orbital is split into inner and outer parts described by three and one Gaussian function, respectively. The expansion coefficients and Gaussian exponents are determined by minimizing the total calculated energy of the atomic ground state. This basis set is then used in single-determinant molecular-orbital studies of a group of small polyatomic molecules. Optimization of valence-shell scaling factors shows that considerable rescaling of atomic functions occurs in molecules, the largest effects being observed for hydrogen and carbon. However, the range of optimum scale factors for each atom is small enough to allow the selection of a standard molecular set. The use of this standard basis gives theoretical equilibrium geometries in reasonable agreement with experiment.
Keywords
Affiliated Institutions
Related Publications
Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms...
Self-Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater-Type Orbitals. Extension to Second-Row Molecules
Least-squares representations of the 3s and 3p Slater-type atomic orbitals by a small number of Gaussian functions are presented. The use of these Gaussian representations in se...
Atomic and molecular calculations with the model potential method. I
A new formulation of the model potential method is introduced for atoms and molecules. The model potential consists of a static local potential which simulates the effect of the...
Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals
Least-squares representations of Slater-type atomic orbitals as a sum of Gaussian-type orbitals are presented. These have the special feature that common Gaussian exponents are ...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. Applications to the uranium atom
The procedure of deriving ab initio effective core potentials (ECP) to incorporate the Coulomb and exchange effects as well as orthogonality constraints from the inner core elec...
Publication Info
- Year
- 1971
- Type
- article
- Volume
- 54
- Issue
- 2
- Pages
- 724-728
- Citations
- 10232
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1674902