Abstract

We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that dont have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. YOLO9000 predicts detections for more than 9000 different object categories, all in real-time.

Keywords

Object detectionPascal (unit)Computer scienceArtificial intelligencePattern recognition (psychology)Object (grammar)Training setComputer vision

Affiliated Institutions

Related Publications

Publication Info

Year
2017
Type
article
Pages
6517-6525
Citations
18283
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

18283
OpenAlex

Cite This

Joseph Redmon, Ali Farhadi (2017). YOLO9000: Better, Faster, Stronger. , 6517-6525. https://doi.org/10.1109/cvpr.2017.690

Identifiers

DOI
10.1109/cvpr.2017.690