Abstract
In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Establishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.
Keywords
Related Publications
Elastic strain of freely suspended single-wall carbon nanotube ropes
We have induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode. Freely suspended ropes were observed to d...
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties
The mechanical response of 15 single wall carbon nanotube (SWCNT) ropes under tensile load was measured. For 8 of these ropes strain data were obtained and they broke at strain ...
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-disp...
Polymorphic transitions in single crystals: A new molecular dynamics method
A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stre...
High-Strain-Rate Plastic Flow Studied via Nonequilibrium Molecular Dynamics
Recent experiments at strain rates reaching 0.1 GHz suggest a power-law dependence of solid-phase shear stress on strain rate. Novel nonequilibrium molecular dynamics simulation...
Publication Info
- Year
- 1921
- Type
- article
- Volume
- 221
- Issue
- 582-593
- Pages
- 163-198
- Citations
- 10376
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1098/rsta.1921.0006