Abstract
A state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of emission energies has been developed and coded in the framework of the so called polarizable continuum model (PCM). The new model allows for a rigorous and effective treatment of dynamical solvent effects in the computation of fluorescence and phosphorescence spectra in solution, and it can be used for studying different relaxation time regimes. SS and conventional linear response (LR) models have been compared by computing the emission energies for different benchmark systems (formaldehyde in water and three coumarin derivatives in ethanol). Special attention is given to the influence of dynamical solvation effects on LR geometry optimizations in solution. The results on formaldehyde point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents and/or weak transitions. The computed emission energies for coumarin derivatives are very close to their experimental counterparts, pointing out the importance of a proper treatment of nonequilibrium solvent effects on both the excited and the ground state energies. The availability of SS-PCM/TD-DFT models for the study of absorption and emission processes allows for a consistent treatment of a number of different spectroscopic properties in solution.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution
An effective state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of excited electronic states has be...
Time-dependent density functional theory for molecules in liquid solutions
A procedure based on the polarizable continuum model (PCM) has been applied to reproduce solvent effects on electronic spectra in connection with the time-dependent density func...
Computational Study on the Properties and Structure of Methyl Lactate
A theoretical study on the properties and molecular level structure of the very important green solvent methyl lactate is carried out in the gas phase and methanol and water sol...
Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations
We describe several improvements to the reaction field model for the ab initio determination of solvation effects. First, the simple spherical cavity model is expanded to includ...
Polarizable dielectric model of solvation with inclusion of charge penetration effects
An approximate method, recently proposed to include in continuum solvation models the effects of electronic charge lying outside the solute cavity, has been adapted and implemen...
Publication Info
- Year
- 2007
- Type
- article
- Volume
- 127
- Issue
- 7
- Pages
- 074504-074504
- Citations
- 492
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.2757168
- PMID
- 17718617