Abstract
This paper deals with time-domain finite-difference (TDFD) techniques for solutions of Maxwell's equations. Two types of algorithms are treated: scattered-field algorithms in which the incident fields (E_i,H_i), are analytically known but the scattered fields (E_s,H_s) must be computed with TDFD methods, and total-field calculations in which total fields (E_T,H_T) are found by TDFD techniques. Nonlinear problems and heavily shielded cavities can only be treated with the total-field approach. The price of this generality is an increase in mathematical complexity and computational cost.
Keywords
Affiliated Institutions
Related Publications
Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media
Maxwell's equations are replaced by a set of finite difference equations. It is shown that if one chooses the field points appropriately, the set of finite difference equations ...
Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations
When time-domain electromagnetic-field equations are solved using finite-difference techniques in unbounded space, there must be a method limiting the domain in which the field ...
Publication Info
- Year
- 1983
- Type
- article
- Volume
- 30
- Issue
- 6
- Pages
- 4583-4588
- Citations
- 85
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tns.1983.4333175