Abstract
We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3--5 \AA{} from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip are reduced. This can cause adatoms to follow the tip as it is moved over the surface.
Keywords
Affiliated Institutions
Related Publications
Adsorption of Cu and Ag atoms on Si(111) surfaces: Local density functional determination of geometries and electronic structures
The electronic structures, adsorption geometries, chemisorption energies, and vibrational frequencies of single Cu and Ag atoms on Si(111) surfaces are determined by self-consis...
The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy
Atomic Imaging Within Adsorbed Molecules Scanning tunneling microscopy provides atomic resolution images of surfaces and adsorbed atoms, but imaging atoms within an organic mole...
Surface-enhanced Raman scattering
On the basis of different types of experiments, the authors develop implicitly the model of surface-enhanced Raman scattering (SERS) of adsorbates on metal surfaces. The long-ra...
Diffusional effects on the reversible excited-state proton transfer. From experiments to Brownian dynamics simulations
We have studied an excited state proton transfer (ESPT) from the cationic "super" photoacid N-methyl 6-hydroxyquinolinium perfluorobutane sulfonate to non-aqueous solvents using...
Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices
Abstract Liquid deposition approaches for chalcopyrite films used in thin‐film photovoltaic devices are reviewed. Most of the targeted materials are based on Cu‐In or Cu‐In‐Ga s...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 77
- Issue
- 25
- Pages
- 5067-5070
- Citations
- 87
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.77.5067
- PMID
- 10062706