Abstract

Elastic- and electrostatic-energy considerations are insufficient for an explanation of cation ordering between tetrahedral and octahedral sites in spinels. Tetrahedral, octahedral, and square covalent bonds are also important when cations are to be accommodated in these sites. The square bonds in octahedral sites can cause the tetragonal distortion observed in ${\mathrm{Mn}}_{3}$${\mathrm{O}}_{4}$ $\ensuremath{\gamma}$-${\mathrm{Mn}}_{2}$${\mathrm{O}}_{3}$, Zn${\mathrm{Mn}}_{2}$${\mathrm{O}}_{4}$, Cu${\mathrm{Fe}}_{2}$${\mathrm{O}}_{4}$, Cu${\mathrm{Cr}}_{2}$${\mathrm{O}}_{4}$, Ca${\mathrm{In}}_{2}$${\mathrm{O}}_{4}$, Cd${\mathrm{In}}_{2}$${\mathrm{O}}_{4}$, and metallic indium. A new magnetic exchange mechanism, "semicovalent exchange," which is consistent with the covalent model, is used to explain the magnetic properties of spinels.

Keywords

OctahedronCrystallographyCovalent bondTetragonal crystal systemIonic bondingTetrahedronMaterials scienceIndiumCondensed matter physicsPhysicsCrystal structureChemistryIon

Affiliated Institutions

Related Publications

<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...

2005 Physical Review B 119 citations

Publication Info

Year
1955
Type
article
Volume
98
Issue
2
Pages
391-408
Citations
694
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

694
OpenAlex

Cite This

John B. Goodenough, Arthur L. Loeb (1955). Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels. Physical Review , 98 (2) , 391-408. https://doi.org/10.1103/physrev.98.391

Identifiers

DOI
10.1103/physrev.98.391