Abstract

The density of states $\ensuremath{\rho}(E)$ in the tail for an electron in a correlated Gaussian random potential in three dimensions is constructed from first principles by means of a simple physical argument. This yields a linear exponential dependence of $\ensuremath{\rho}$ on $E$ which, for reasonable values of the rms potential fluctuation and correlation length, spans many decades, and occupies most of the experimentally observable energy range. This is suggested as the origin of the fundamental Urbach optical-absorption edge.

Keywords

PhysicsAbsorption edgeObservableElectronAbsorption (acoustics)GaussianCondensed matter physicsRange (aeronautics)Band gapQuantum mechanicsOpticsMaterials science

Affiliated Institutions

Related Publications

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
1986
Type
article
Volume
57
Issue
14
Pages
1777-1780
Citations
306
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

306
OpenAlex

Cite This

Sajeev John, Costas M. Soukoulis, Morrel H. Cohen et al. (1986). Theory of Electron Band Tails and the Urbach Optical-Absorption Edge. Physical Review Letters , 57 (14) , 1777-1780. https://doi.org/10.1103/physrevlett.57.1777

Identifiers

DOI
10.1103/physrevlett.57.1777