Abstract
The expectation-maximization (EM) algorithm is a popular tool for maximum likelihood estimation, but its use in high-dimensional regularization problems in linear mixed-effects models has been limited. In this article, we introduce the EMLMLasso algorithm, which combines the EM algorithm with the popular and efficient R package glmnet for Lasso variable selection of fixed effects in linear mixed-effects models and allows for automatic selection of the tuning parameter. A comprehensive performance evaluation is conducted, comparing the proposed EMLMLasso algorithm against two existing algorithms implemented in the R packages glmmLasso and splmm . In both simulated and real-world applications analyzed, our algorithm showed robustness and effectiveness in variable selection, including cases where the number of predictors <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> is greater than the number of independent observations <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> . In most evaluated scenarios, the EMLMLasso algorithm consistently outperformed both glmmLasso and splmm . The proposed method is quite general and simple to implement, allowing for extensions based on ridge and elastic net penalties in linear mixed-effects models.
Affiliated Institutions
Related Publications
GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">⊙</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math>
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise rat...
Entropy for group endomorphisms and homogeneous spaces
Topological entropy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h Subscript d Baseline left-parenthesis upper T...
A Monte Carlo factoring algorithm with linear storage
We present an algorithm which will factor an integer <italic>n</italic> quite efficiently if the class number <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="ht...
Four decades of Antarctic Ice Sheet mass balance from 1979–2017
We use updated drainage inventory, ice thickness, and ice velocity data to calculate the grounding line ice discharge of 176 basins draining the Antarctic Ice Sheet from 1979 to...
On the probability that a random ±1-matrix is singular
We report some progress on the old problem of estimating the probability, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" al...
Publication Info
- Year
- 2025
- Type
- article
- Pages
- 9622802251399913-9622802251399913
- Citations
- 0
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1177/09622802251399913