Abstract
The critical conditions for the formation of Taylor vortices between horizontal concentric cylinders are considered in detail. (1) Where the flow is unidirectional round the annular space and is caused entirely by the rotation of the inner cylinder. (2) Where the flow is caused entirely by pumping round the annular space. (3) Where a liquid is caused to reverse its flow at a free surface, the flow being entirely caused by the rotation of the inner cylinder. The last case is analyzed by the method of small disturbances and the conditions under which Taylor vortices will form are found. Results for the first two cases are already available in the literature. From examination of the three criteria a dimensionless number is proposed to correlate the critical values of the various parameters at the onset of these Taylor vortices. The proposed number has the advantage that it is insensitive to the velocity distribution in the annulus. It is subsequently used to predict the critical conditions for the onset of Taylor vortices under conditions that have not been analyzed, i.e. where flow is due to pumping and rotation of the inner cylinder. The criterion is found to predict successfully the results of various experiments carried out. In addition experimental verification of the theoretical work of Dean (1928) and of the additional analysis carried out in this paper is also given.
Keywords
Related Publications
Dynamical instabilities and the transition to chaotic Taylor vortex flow
We have used the technique of laser-Doppler velocimetry to study the transition to turbulence in a fluid contained between concentric cylinders with the inner cylinder rotating....
On convection cells induced by surface tension
A mechanism is proposed by which cellular convective motion of the type observed by H. Bénard, which hitherto has been attributed to the action of buoyancy forces, can also be i...
The instability of a layer of fluid heated below and subject to the simultaneous action of a magnetic field and rotation
This paper is devoted to an examination of the stability of a horizontal layer of fluid heated below, subject to an effective gravity g acting (approximately) in the direction o...
Cellular convection with finite amplitude in a rotating fluid
When a rotating layer of fluid is heated uniformly from below and cooled from above, the onset of instability is inhibited by the rotation. The first part of this paper treats t...
Publication Info
- Year
- 1959
- Type
- article
- Volume
- 251
- Issue
- 1264
- Pages
- 76-91
- Citations
- 83
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1098/rspa.1959.0091