Abstract
Theoretical and empirical evidence indicates that biodiversity, species coexistence, and community stability are interconnected; however, the mechanisms underlying these associations remain poorly understood, particularly in aquatic ecosystems mediated by macrophytes. Here, we conducted a comprehensive investigation of microbial communities in bulk and Phragmites australis rhizosphere across 26 lake littoral zones of typical plain and plateau in China, and evaluated the microbial stability based on the community mean tolerance breadth, community mean response asynchrony, and network stability. We found the rhizosphere significantly enhanced bacterial and fungal richness, community mean tolerance breadth, and niche breadth compared to bulk. This enhancement was primarily driven by an overall increase in species richness, rather than by selectively promoting generalists or specialists. Rhizosphere microbial members displayed increased niche overlap and species competition, along with enhanced network complexity and stability, both within and between bacterial and fungal communities. Structural equation modeling indicated that fungal taxa exhibited a competitive advantage over bacterial members in maintaining community stability within the rhizosphere. Therefore, our study demonstrates that the rhizosphere enhances microbial community stability primarily by expanding overall species richness and intensifying competitive interactions. These findings advance the understanding of plant‐mediated microbiome stabilization and have significant implications for predicting ecosystem resilience in freshwater habitats under environmental change.
Affiliated Institutions
Related Publications
Using niche‐based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice
Geographic studies addressing the role of competition in determining species’ macrodistributions have been limited by only simple or subjective means of identifying regions of s...
Community Assembly, Niche Conservatism, and Adaptive Evolution in Changing Environments
The widespread correspondence between phenotypic variation and environmental conditions, the "fit" of organisms to their environment, reflects the adaptive value of plant functi...
Community assembly and invasion: An experimental test of neutral versus niche processes
A species-addition experiment showed that prairie grasslands have a structured, nonneutral assembly process in which resident species inhibit, via resource consumption, the esta...
Forest Fragmentation and Bird Community Dynamics: Inference at Regional Scales
With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness...
Evolutionary history and the effect of biodiversity on plant productivity
Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how...
Publication Info
- Year
- 2025
- Type
- article
- Citations
- 0
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/ecog.08303