Abstract
The self-assembly mechanism of alkanethiol monolayers on the (111) surface of gold was discovered with the use of an ultrahigh-vacuum scanning tunneling microscope. Monolayer formation follows a two-step process that begins with condensation of low-density crystalline islands, characterized by surface-aligned molecular axes, from a lower density lattice-gas phase. At saturation coverage of this phase, the monolayer undergoes a phase transition to a denser phase by realignment of the molecular axes with the surface normal. These studies reveal the important role of molecule-substrate and molecule-molecule interactions in the self-assembly of these technologically important material systems.
Keywords
Affiliated Institutions
Related Publications
Self-Assembly of Alkanethiol Molecules onto Platinum and Platinum Oxide Surfaces
We studied the self-assembly of n-alkanethiols CH3(CH2)mSH (m = 5, 7, 9, 11, 13, 15, 17, 19, 21) onto platinum thin films with two different surface properties: metallic and oxi...
Epitaxial growth of a silicene sheet
Using atomic resolved scanning tunneling microscopy, we present here the experimental evidence of a silicene sheet (graphenelike structure) epitaxially grown on a close-packed s...
Mechanism of electron conduction in self-assembled alkanethiol monolayer devices
Electron tunneling through self-assembled monolayers (SAM's) of alkanethiols is investigated using nanometer-scale devices. Temperature-dependent current-voltage measurements ar...
Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is s...
Intrinsic Character of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo>×</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt><mml:mo>×</mml:mo><mml:msqrt><mml:mn>3</mml:mn></mml:msqrt><mml:mo stretchy="false">)</mml:mo></mml:math>Phase Transition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">P</mml:mi><mml:mi mathvariant="normal">b</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">S</mml:mi><mml:mi mathvariant="normal">i</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>111</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>
We have investigated the (3 x 3) to (square root 3 x square root 3) reversible phase transition in Pb/Si(111) by means of variable temperature scanning tunneling microscopy and ...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 272
- Issue
- 5265
- Pages
- 1145-1148
- Citations
- 816
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1126/science.272.5265.1145
- PMID
- 8662446