Abstract
Monte Carlo computer simulations were used to investigate the performance of three X 2 test statistics in confirmatory factor analysis (CFA). Normal theory maximum likelihood )~2 (ML), Browne's asymptotic distribution free X 2 (ADF), and the Satorra-Bentler rescaled X 2 (SB) were examined under varying conditions of sample size, model specification, and multivariate distribution. For properly specified models, ML and SB showed no evidence of bias under normal distributions across all sample sizes, whereas ADF was biased at all but the largest sample sizes. ML was increasingly overestimated with increasing nonnormality, but both SB (at all sample sizes) and ADF (only at large sample sizes) showed no evidence of bias. For misspecified models, ML was again inflated with increasing nonnormality, but both SB and ADF were underestimated with increasing nonnormality. It appears that the power of the SB and ADF test statistics to detect a model misspecification is attenuated given nonnormally distributed data.
Keywords
Affiliated Institutions
Related Publications
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.
This study evaluated the sensitivity of maximum likelihood (ML)-, generalized least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to model misspecific...
A Monte-Carlo Study of Confirmatory Factor Analytic Tests of Measurement Equivalence/Invariance
In recent years, confirmatory factor analytic (CFA) techniques have become the most common method of testing for measurement equivalence/invariance (ME/I). However, no study has...
A study of the power associated with testing factor mean differences under violations of factorial invariance
We examine the power associated with the test of factor mean differences when the assumption of factorial invariance is violated. Utilizing the Wald test for obtaining power, is...
Teacher's Corner: Testing Measurement Invariance of Second-Order Factor Models
We illustrate testing measurement invariance in a second-order factor model using a quality of life dataset (n = 924). Measurement invariance was tested across 2 groups at a set...
Introduction to Econometrics
Foreword. Preface to the Second Edition. Preface to the Third Edition. Obituary. INTRODUCTION AND THE LINEAR REGRESSION MODEL. What is Econometrics? Statistical Background and M...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 1
- Issue
- 1
- Pages
- 16-29
- Citations
- 4872
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1037/1082-989x.1.1.16