Abstract
I propose a new method for variable selection and shrinkage in Cox's proportional hazards model. My proposal minimizes the log partial likelihood subject to the sum of the absolute values of the parameters being bounded by a constant. Because of the nature of this constraint, it shrinks coefficients and produces some coefficients that are exactly zero. As a result it reduces the estimation variance while providing an interpretable final model. The method is a variation of the 'lasso' proposal of Tibshirani, designed for the linear regression context. Simulations indicate that the lasso can be more accurate than stepwise selection in this setting.
Keywords
Affiliated Institutions
Related Publications
On the LASSO and its Dual
Abstract Proposed by Tibshirani, the least absolute shrinkage and selection operator (LASSO) estimates a vector of regression coefficients by minimizing the residual sum of squa...
Regression Shrinkage and Selection Via the Lasso
SUMMARY We propose a new method for estimation in linear models. The ‘lasso’ minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients b...
A bootstrap resampling procedure for model building: Application to the cox regression model
Abstract A common problem in the statistical analysis of clinical studies is the selection of those variables in the framework of a regression model which might influence the ou...
A new approach to variable selection in least squares problems
The title Lasso has been suggested by Tibshirani (1996) as a colourful name for a technique of variable selection which requires the minimization of a sum of squares subject to ...
Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR
Summary Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In thi...
Publication Info
- Year
- 1997
- Type
- article
- Volume
- 16
- Issue
- 4
- Pages
- 385-395
- Citations
- 4150
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3