Abstract
An extension of the Onsager theory of dielectric polarization is presented. The local dielectric constant is approximated by the macroscopic dielectric constant of the fluid in a region outside a molecule and its first shell of neighbors rather than in the entire region exterior to the molecule. In addition to the molecular dipole moment, the average value 〈cosγ〉Av of the cosine of the angle between neighbor dipoles is a determining factor. Hindered relative rotation of neighboring molecules produces a correlation between their orientations and prevents 〈cosγ〉Av from vanishing. The theory is applied to liquid water under the assumption of tetrahedral coordination and directed bonds between neighboring molecules.
Keywords
Affiliated Institutions
Related Publications
On the Role of Dipole-Dipole Coupling in Dielectric Media
The mathematical treatment of dipole-dipole coupling in my previous article on magnetism applies with but little modification to the electric case. Because of fluctuation effect...
Dielectric Absorption in Polar Media and the Local Field
The phenomena of dielectric dispersion and absorption in polar liquids subject to applied high frequency electrical fields are discussed on the basis of a modified Onsager theor...
CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model
Abstract A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P‐FQ po...
CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations
Abstract A first‐generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic har...
One-Electron Properties of Near-Hartree–Fock Wavefunctions. I. Water
Self-consistent-field calculations are reported for the ground state of the water molecule in a contracted and uncontracted Gaussian basis set. The uncontracted set is shown to ...
Publication Info
- Year
- 1939
- Type
- article
- Volume
- 7
- Issue
- 10
- Pages
- 911-919
- Citations
- 1878
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.1750343