Abstract

We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a; trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.

Keywords

CurveletImage denoisingArtificial intelligenceNoise reductionComputer visionImage processingPattern recognition (psychology)Computer scienceImage (mathematics)Image restorationWavelet transformMathematicsWavelet

Affiliated Institutions

Related Publications

Compressed sensing

Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible ...

2004 17126 citations

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Publication Info

Year
2002
Type
article
Volume
11
Issue
6
Pages
670-684
Citations
2213
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

2213
OpenAlex

Cite This

Jean‐Luc Starck, Emmanuel J. Candès, D.L. Donoho (2002). The curvelet transform for image denoising. IEEE Transactions on Image Processing , 11 (6) , 670-684. https://doi.org/10.1109/tip.2002.1014998

Identifiers

DOI
10.1109/tip.2002.1014998