Abstract

When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is /spl Theta/(W/spl radic/An) bit-meters per second. Thus even under optimal circumstances, the throughput is only /spl Theta/(W//spl radic/n) bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

Keywords

Node (physics)ThroughputComputer scienceComputer networkChannel (broadcasting)Wireless networkTransmission (telecommunications)Upper and lower boundsTopology (electrical circuits)Product (mathematics)WirelessMathematicsTelecommunicationsCombinatoricsPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
2000
Type
article
Volume
46
Issue
2
Pages
388-404
Citations
8308
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

8308
OpenAlex

Cite This

Piyush Gupta, P. R. Kumar (2000). The capacity of wireless networks. IEEE Transactions on Information Theory , 46 (2) , 388-404. https://doi.org/10.1109/18.825799

Identifiers

DOI
10.1109/18.825799