Abstract
Surface plasmons at the interface between metal and a dielectric with strong optical amplification are analyzed theoretically. It is shown that proper choice of optical indices of the dielectric medium results in an infinitely large effective refractive index of surface waves. Such resonant plasmons have extremely low group velocity and are localized within a vanishingly small distance near the interface. The plasmon-related anomalies in the UV reflection spectra are predicted for nanoscale gratings on a surface of a silver film covered by a concentrated dye solution with high optical amplification.
Keywords
Affiliated Institutions
Related Publications
Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles
In this paper, we explore the optical contributions of the substrate to the localized surface plasmon resonance (LSPR) spectrum of surface confined Ag nanoparticles produced by ...
Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles
In this paper we examine the effect of solvent on the optical extinction spectrum of periodic arrays of surface-confined silver nanoparticles fabricated by nanosphere lithograph...
Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces
A theory for surface enhanced Raman scattering (SERS) is developed. Effects due to realistic surface geometry and dielectric properties are included. Three sources of enhanced R...
Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography
Mesostructured silica waveguide arrays were fabricated with a combination of acidic sol-gel block copolymer templating chemistry and soft lithography. Waveguiding was enabled by...
Surface-enhanced spectroscopy
In 1978 it was discovered, largely through the work of Fleischmann, Van Duyne, Creighton, and their coworkers that molecules adsorbed on specially prepared silver surfaces produ...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 70
- Issue
- 15
- Citations
- 119
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.70.155416