Abstract
The total energy of the 3d transition metals is calculated as a function of volume in each of six different crystal structures. The calculations employ the local-density-functional scheme and the full-potential linear muffin-tin orbitals method. Both self-consistent and non-self-consistent Harris-Foulkes calculations are shown and the connection is made between these and simpler tight-binding and classical models of interatomic forces. The energy-volume relations may serve as a database in the construction of such empirical schemes.
Keywords
Affiliated Institutions
Related Publications
Electronic Structure Calculations of High T<sub>c</sub>Materials
Abstract We outline the computational methods used to perform accurate and reliable LMTO-ASA (Linear Muffin-Tin Orbitals in the Atomic Sphere Approximation) calculations within ...
Self-consistent cluster calculations with correct embedding for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>4</mml:mn><mml:mi>d</mml:mi></mml:math>, and some<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>sp</mml:mi></mml:math>impurities in copper
Self-consistent calculations are presented for the electronic structure of $3d$, $4d$, and some $\mathrm{sp}$ impurities in Cu. The calculations are based on density-functional ...
Muffin-tin orbitals and molecular calculations: General formalism
An account is given of a new formalism for calculating energy levels in molecules using techniques that derive from the band theory of metals. After showing how the molecular po...
Calculation of Coulomb-interaction parameters for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>using a constrained-density-functional approach
The constrained-density-functional approach is used to calculate the energy surface as a function of local charge fluctuations in ${\mathrm{La}}_{2}$${\mathrm{CuO}}_{4}$. This e...
Self-Consistent-Field<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>X</mml:mi><mml:mi>α</mml:mi></mml:math>Cluster Method for Polyatomic Molecules and Solids
This paper describes a practical self-consistent-field (SCF) method of calculating electronic energy levels and eigenfunctions, adapted for polyatomic molecules and solids. The ...
Publication Info
- Year
- 1990
- Type
- article
- Volume
- 41
- Issue
- 12
- Pages
- 8127-8138
- Citations
- 208
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.41.8127