Abstract
The study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.
Keywords
Affiliated Institutions
Related Publications
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). W...
The Analysis of Variance
Originally published in 1959, this classic volume has had a major impact on generations of statisticians. Newly issued in the Wiley Classics Series, the book examines the basic ...
Singular Integrals and Differentiability Properties of Functions.
Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numb...
Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm
Summary A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone ...
A Linear Spatial Correlation Model, with Applications to Positron Emission Tomography
Abstract A simple spatial-correlation model is presented for repeated measures data. Correlation between observations on the same subject is assumed to decay as a linear functio...
Publication Info
- Year
- 1988
- Type
- book
- Citations
- 736
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1017/cbo9780511624131