Abstract
This book reviews the statistical procedures used to detect measurement bias. Measurement bias is examined from a general latent variable perspective so as to accommodate different forms of testing in a variety of contexts including cognitive or clinical variables, attitudes, personality dimensions, or emotional states. Measurement models that underlie psychometric practice are described, including their strengths and limitations. Practical strategies and examples for dealing with bias detection are provided throughout. The book begins with an introduction to the general topic, followed by a review of the measurement models used in psychometric theory. Emphasis is placed on latent variable models, with introductions to classical test theory, factor analysis, and item response theory, and the controversies associated with each, being provided. Measurement invariance and bias in the context of multiple populations is defined in chapter 3 followed by chapter 4 that describes the common factor model for continuous measures in multiple populations and its use in the investigation of factorial invariance. Identification problems in confirmatory factor analysis are examined along with estimation and fit evaluation and an example using WAIS-R data. The factor analysis model for discrete measures in multiple populations with an emphasis on the specification, identification, estimation, and fit evaluation issues is addressed in the next chapter. An MMPI item data example is provided. Chapter 6 reviews both dichotomous and polytomous item response scales emphasizing estimation methods and model fit evaluation. The use of models in item response theory in evaluating invariance across multiple populations is then described, including an example that uses data from a large-scale achievement test. Chapter 8 examines item bias evaluation methods that use observed scores to match individuals and provides an example that applies item response theory to data introduced earlier in the book. The book concludes with the implications of measurement bias for the use of tests in prediction in educational or employment settings. A valuable supplement for advanced courses on psychometrics, testing, measurement, assessment, latent variable modeling, and/or quantitative methods taught in departments of psychology and education, researchers faced with considering bias in measurement will also value this book.  
Keywords
Affiliated Institutions
Related Publications
Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance.
This study investigated the utility of confirmatory factor analysis (CFA) and item response theory (IRT) models for testing the comparability of psychological measurements. Both...
Measurement Invariance, Factor Analysis and Factorial Invariance
Several concepts are introduced and defined: measurement invariance, structural bias, weak measurement invariance, strong factorial invariance, and strict factorial invariance. ...
Teacher's Corner: Testing Measurement Invariance of Second-Order Factor Models
We illustrate testing measurement invariance in a second-order factor model using a quality of life dataset (n = 924). Measurement invariance was tested across 2 groups at a set...
Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance.
Addresses issues related to partial measurement in variance using a tutorial approach based on the LISREL confirmatory factor analytic model. Specifically, we demonstrate proced...
Fundamentals of item response theory
Background Concepts, Models, and Features Ability and Item Parameter Estimation Assessment of Model-Data Fit The Ability Scale Item and Test Information and Efficiency Functions...
Publication Info
- Year
- 2012
- Type
- book
- Citations
- 1516
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.4324/9780203821961