Abstract

Abstract We consider the problem of interpreting categorical regression models, such as the polytomous logistic model, the continuation‐ratio model, the stereotype model, and the cumulative‐odds model. We present a method to convert categorical regression coefficients into estimates of standardized fitted probabilities, probability differences and probability ratios. We use a delta‐method approach to estimate standard errors. We then present a small simulation study to compare different transforms for setting confidence limits, and provide an illustration of our approach in an observational study of drug therapy of polymyositis.

Keywords

Categorical variableRegressionStatisticsRegression analysisComputer scienceEconometricsMathematics

MeSH Terms

AlgorithmsAnti-Inflammatory AgentsAutoantibodiesAzathioprineConfidence IntervalsConfounding FactorsEpidemiologicData InterpretationStatisticalHumansImmunosuppressive AgentsModelsStatisticalOdds RatioPolymyositisPrednisoneRegression AnalysisStatisticsNonparametricTreatment Outcome

Affiliated Institutions

Related Publications

Categorical Data Analysis

Preface. 1. Introduction: Distributions and Inference for Categorical Data. 1.1 Categorical Response Data. 1.2 Distributions for Categorical Data. 1.3 Statistical Inference for ...

2002 Wiley series in probability and stati... 6519 citations

Publication Info

Year
1995
Type
article
Volume
14
Issue
19
Pages
2131-2141
Citations
48
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

48
OpenAlex
2
Influential
30
CrossRef

Cite This

Marshall M. Joffe, Sander Greenland (1995). Standardized estimates from categorical regression models. Statistics in Medicine , 14 (19) , 2131-2141. https://doi.org/10.1002/sim.4780141907

Identifiers

DOI
10.1002/sim.4780141907
PMID
8552892

Data Quality

Data completeness: 86%