Abstract
Abstract Summary: SPEPlip is a neural network-based method, trained and tested on a set of experimentally derived signal peptides from eukaryotes and prokaryotes. SPEPlip identifies the presence of sorting signals and predicts their cleavage sites. The accuracy in cross-validation is similar to that of other available programs: the rate of false positives is 4 and 6%, for prokaryotes and eukaryotes respectively and that of false negatives is 3% in both cases. When a set of 409 prokaryotic lipoproteins is predicted, SPEPlip predicts 97% of the chains in the signal peptide class. However, by integrating SPEPlip with a regular expression search utility based on the PROSITE pattern, we can successfully discriminate signal peptide-containing chains from lipoproteins. We propose the method for detecting and discriminating signal peptides containing chains and lipoproteins. Availability: It can be accessed through the web page at http://gpcr.biocomp.unibo.it/predictors/
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
Abstract Background To evaluate binary classifications and their confusion matrices, scientific researchers can employ several statistical rates, accordingly to the goal of the ...
Cascade R-CNN: Delving Into High Quality Object Detection
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usua...
GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions
Improving the accuracy of prediction of gene starts is one of a few remaining open problems in computer prediction of prokaryotic genes. Its difficulty is caused by the absence ...
On the nature of antibody combining sites: Unusual structural features that may confer on these sites an enhanced capacity for binding ligands
Abstract A detailed analysis of the structural aspects of antibody–antigen interactions has been made possible by the availability of X‐ray structures for three complexes of ant...
The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data
The Catalytic Site Atlas (CSA) provides catalytic residue annotation for enzymes in the Protein Data Bank. It is available online at http://www.ebi.ac.uk/thornton-srv/databases/...
Publication Info
- Year
- 2003
- Type
- article
- Volume
- 19
- Issue
- 18
- Pages
- 2498-2499
- Citations
- 68
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/bioinformatics/btg360
- PMID
- 14668245