Abstract
The interaction of homologous and heterologous albumin-gold complex (Alb-Au) with capillary endothelium was investigated in the mouse lung, heart, and diaphragm. Perfusion of the tracer in situ for from 3 to 35 min was followed by washing with phosphate-buffered saline, fixation by perfusion, and processing for electron microscopy. From the earliest time examined, one and sometimes two rows of densely packed particles bound to some restricted plasma membrane microdomains that appeared as uncoated pits, and to plasmalemmal vesicles open on the luminal front. Morphometric analysis, using various albumin-gold concentrations, showed that the binding is saturable at a very low concentration of the ligand and short exposure. After 5 min, tracer-carrying vesicles appeared on the abluminal front, discharging their content into the subendothelial space. As a function of tracer concentration 1-10% of plasmalemmal vesicles contained Alb-Au particles in fluid phase; from 5 min on, multivesicular bodies were labeled by the tracer. Plasma membrane, coated pits, and coated vesicles were not significantly marked at any time interval. Heparin or high ionic strength did not displace the bound Alb-Au from vesicle membrane. No binding was obtained when Alb-Au was competed in situ with albumin or was injected in vivo. Gold complexes with fibrinogen, fibronectin, glucose oxidase, or polyethyleneglycol did not give a labeling comparable to that of albumin. These results suggest that on the capillary endothelia examined, the Alb-Au is adsorbed on specific binding sites restricted to uncoated pits and plasmalemmal vesicles. The tracer is transported in transcytotic vesicles across endothelium by receptor-mediated transcytosis, and to a lesser extent is taken up by pinocytotic vesicles. The existence of albumin receptors on these continuous capillary endothelia may provide a specific mechanism for the transport of albumin and other molecules carried by this protein.
Keywords
Related Publications
Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway.
Cholera toxin (CT) represents a class of ligands that binds preferentially to noncoated pits on the cell surface. In the present study, we have investigated the mechanism of end...
Cathepsin L Functionally Cleaves the Severe Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than Adjacent to the Fusion Peptide
ABSTRACT Unlike other class I viral fusion proteins, spike proteins on severe acute respiratory sydrome coronavirus virions are uncleaved. As we and others have demonstrated, in...
A highly conserved sequence of the Arg-Gly-Asp-binding domain of the integrin beta 3 subunit is sensitive to stimulation
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine,...
A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet glycoprotein IIb/IIIa complex.
Considerable evidence indicates that the glycoprotein (GP) IIb/IIIa complex on human platelets functions as a receptor for fibrinogen, but little is known about the mechanism of...
Two Distinct Populations of Exosomes Are Released from LIM1863 Colon Carcinoma Cell-derived Organoids
Exosomes are naturally occurring biological nanomembranous vesicles (̃40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. T...
Publication Info
- Year
- 1986
- Type
- article
- Volume
- 102
- Issue
- 4
- Pages
- 1304-1311
- Citations
- 371
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1083/jcb.102.4.1304