Abstract
This paper introduces the sparse multilayer perceptron (SMLP) which jointly learns a sparse feature representation and nonlinear classifier boundaries to optimally discriminate multiple output classes. SMLP learns the transformation from the inputs to the targets as in multilayer perceptron (MLP) while the outputs of one of the internal hidden layers is forced to be sparse. This is achieved by adding a sparse regularization term to the cross-entropy cost and updating the parameters of the network to minimize the joint cost. On the TIMIT phoneme recognition task, SMLP-based systems trained on individual speech recognition feature streams perform significantly better than the corresponding MLP-based systems. Phoneme error rate of 19.6% is achieved using the combination of SMLP-based systems, a relative improvement of 3.0% over the combination of MLP-based systems.
Keywords
Affiliated Institutions
Related Publications
Backpropagation training for multilayer conditional random field based phone recognition
Conditional random fields (CRFs) have recently found increased popularity in automatic speech recognition (ASR) applications. CRFs have previously been shown to be effective com...
Deep Belief Networks using discriminative features for phone recognition
Deep Belief Networks (DBNs) are multi-layer generative models. They can be trained to model windows of coefficients extracted from speech and they discover multiple layers of fe...
Comparing multilayer perceptron to Deep Belief Network Tandem features for robust ASR
In this paper, we extend the work done on integrating multilayer perceptron (MLP) networks with HMM systems via the Tandem approach. In particular, we explore whether the use of...
Speech Recognition Using Augmented Conditional Random Fields
Acoustic modeling based on hidden Markov models (HMMs) is employed by state-of-the-art stochastic speech recognition systems. Although HMMs are a natural choice to warp the time...
Exemplar-Based Sparse Representation Features: From TIMIT to LVCSR
The use of exemplar-based methods, such as support vector machines (SVMs), k-nearest neighbors (kNNs) and sparse representations (SRs), in speech recognition has thus far been l...
Publication Info
- Year
- 2011
- Type
- article
- Volume
- 20
- Issue
- 1
- Pages
- 23-29
- Citations
- 65
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tasl.2011.2129510