Abstract
In a previous work, we described a simple model for calculating direct normal and diffuse horizontal spectral solar irradiance for cloudless sky conditions. In this paper, we present a new simple model (SPCTRAL2) that incorporates improvements to the simple model approach and an algorithm for calculating spectral irradiance on tilted surfaces. The model was developed using comparisons with rigorous radiative transfer codes and limited outdoor measurements. SPCTRAL2 produces terrestrial spectra between 0.3 and 4.0 μm with a resolution of approximately 10 nm. Inputs to the model include the solar zenith angle, the collector tilt angle, atmospheric turbidity, the amount of precipitable water vapor and ozone, surface pressure, and ground albedo. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different solar collector geometries using microcomputers.
Keywords
Affiliated Institutions
Related Publications
HyRec: A fast and highly accurate primordial hydrogen and helium recombination code
We present a state-of-the-art primordial recombination code, HYREC, including all the physical effects that have been shown to significantly affect recombination. The computatio...
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times m...
A Simple Model for the Absorption of Starlight by Dust in Galaxies
We present a new model to compute the effects of dust on the integrated spectral properties of galaxies, based on an idealized prescription of the main features of the interstel...
Nebular emission from star-forming galaxies
We present a new model for computing consistently the line and continuum\nemission from galaxies, based on a combination of recent population synthesis\nand photoionization code...
First‐Year <i>Wilkinson Microwave Anisotropy Probe</i> ( <i>WMAP</i> ) Observations: Preliminary Maps and Basic Results
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error...
Publication Info
- Year
- 1986
- Type
- article
- Volume
- 25
- Issue
- 1
- Pages
- 87-97
- Citations
- 814
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/1520-0450(1986)025<0087:sssmfd>2.0.co;2