Abstract
Abstract Whole genome duplication ~70 million years ago provided raw material for Poaceae (grass) diversification. Comparison of rice (Oryza sativa), sorghum (Sorghum bicolor), maize (Zea mays), and Brachypodium distachyon genomes revealed that one paleo-duplicated chromosome pair has experienced very different evolution than all the others. For tens of millions of years, the two chromosomes have experienced illegitimate recombination that has been temporally restricted in a stepwise manner, producing structural stratification in the chromosomes. These strata formed independently in different grass lineages, with their similarities (low sequence divergence between paleo-duplicated genes) preserved in parallel for millions of years since the divergence of these lineages. The pericentromeric region of this homeologous chromosome pair accounts for two-thirds of the gene content differences between the modern chromosomes. Both intriguing and perplexing is a distal chromosomal region with the greatest DNA similarity between surviving duplicated genes but also with the highest concentration of lineage-specific gene pairs found anywhere in these genomes and with a significantly elevated gene evolutionary rate. Intragenomic similarity near this chromosomal terminus may be important in hom(e)ologous chromosome pairing. Chromosome structural stratification, together with enrichment of autoimmune response–related (nucleotide binding site–leucine-rich repeat) genes and accelerated DNA rearrangement and gene loss, confer a striking resemblance of this grass chromosome pair to the sex chromosomes of other taxa.
Keywords
Affiliated Institutions
Related Publications
Colored de Bruijn Graphs and the Genome Halving Problem
Breakpoint graph analysis is a key algorithmic technique in studies of genome rearrangements. However, breakpoint graphs are defined only for genomes without duplicated genes, t...
RepeatModeler2 for automated genomic discovery of transposable element families
The accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable element...
Genetic alterations in breast cancer
Abstract The etiology of breast cancer involves a complex interplay of various factors, including genetic alterations. Many studies have been devoted to the identification and c...
High-Throughput Gene Mapping in <i>Caenorhabditis elegans</i>
Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-th...
SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing
The latest revolution in the DNA sequencing field has been brought about by the development of automated sequencers that are capable of generating giga base pair data sets quick...
Publication Info
- Year
- 2011
- Type
- article
- Volume
- 23
- Issue
- 1
- Pages
- 27-37
- Citations
- 137
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1105/tpc.110.080622