Abstract
The sensitivity of the global water cycle to the water-holding capacity of the plant-root zone of continental soils is estimated by simulations using a mathematical model of the general circulation of the atmosphere, with prescribed ocean surface temperatures and prescribed cloud. With an increase of the globally constant storage capacity, evaporation from the continents rises and runoff falls, because a high storage capacity enhances the ability of the soil to store water from periods of excess for later evaporation during periods of shortage. In addition to this direct effect, atmospheric feedbacks associated with the resulting higher precipitation and lower potential evaporation drive further changes in evaporation and runoff. Most of the changes in evaporation and runoff occur in the tropics and in the northern middle-latitude rain belts. Global evaporation from land increases by about 7 cm for each doubling of storage capacity in the range from less than 1 cm to almost 60 cm. Sensitivity is negligible for capacity above 60 cm. In the tropics and in the extratropics, the increased continental evaporation is split, in approximately equal parts, between increased continental precipitation and decreased convergence of atmospheric water vapor from ocean to land. In the tropics, this partitioning is strongly affected by induced circulation changes, which are themselves forced by changes in latent beating. The increased availability of water at the continental surfaces leads to an intensification of the Hadley circulation and a weakening of the monsoonal circulations. In the northern middle and high latitudes, the increased continental evaporation moistens the atmosphere. This change in humidity of the atmosphere is greater above the continents than above the oceans, and the resulting reduction in the sea-land humidity gradient causes a decreased onshore transport of water vapor by transient eddies. Results established here may have implications for certain problems in global hydrology and climate dynamics, including the effects of water resource development on global precipitation, climatic control of plant rooting characteristics, climatic effects of tropical deforestation, and climate-model errors induced by errors in land-surface hydrologic parameterizations.
Keywords
Affiliated Institutions
Related Publications
GEOCARB II; a revised model of atmospheric CO 2 over Phanerozoic time
Revision of the GEOCARB model (Berner, 1991, 1994) for paleolevels of atmospheric CO2, has been made with emphasis on factors affecting CO2 uptake by continental weathering. Thi...
Planetary Boundaries: Exploring the Safe Operating Space for Humanity
"Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustain...
Abrupt Climate Change and Transient Climates during the Paleogene: A Marine Perspective
Detailed investigations of high latitude sequences recently collected by the Ocean Drilling Program (ODP) indicate that periods of rapid climate change often culminated in brief...
Global Consequences of Land Use
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air ...
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
Abstract. Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an en...
Publication Info
- Year
- 1994
- Type
- article
- Volume
- 7
- Issue
- 4
- Pages
- 506-526
- Citations
- 219
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/1520-0442(1994)007<0506:sotgwc>2.0.co;2