Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array

2023 The Astrophysical Journal Letters 1,009 citations

Abstract

Abstract Pulsar timing arrays aim to detect nanohertz-frequency gravitational waves (GWs). A background of GWs modulates pulsar arrival times and manifests as a stochastic process, common to all pulsars, with a signature spatial correlation. Here we describe a search for an isotropic stochastic gravitational-wave background (GWB) using observations of 30 millisecond pulsars from the third data release of the Parkes Pulsar Timing Array (PPTA), which spans 18 yr. Using current Bayesian inference techniques we recover and characterize a common-spectrum noise process. Represented as a strain spectrum <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>h</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mn>1</mml:mn> <mml:msup> <mml:mrow> <mml:mi>yr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> , we measure <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.9</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.3</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>15</mml:mn> </mml:mrow> </mml:msup> </mml:math> and α = −0.45 ± 0.20, respectively (median and 68% credible interval). For a spectral index of α = −2/3, corresponding to an isotropic background of GWs radiated by inspiraling supermassive black hole binaries, we recover an amplitude of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.04</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.22</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.25</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>15</mml:mn> </mml:mrow> </mml:msup> </mml:math> . However, we demonstrate that the apparent signal strength is time-dependent, as the first half of our data set can be used to place an upper limit on A that is in tension with the inferred common-spectrum amplitude using the complete data set. We search for spatial correlations in the observations by hierarchically analyzing individual pulsar pairs, which also allows for significance validation through randomizing pulsar positions on the sky. For a process with α = −2/3, we measure spatial correlations consistent with a GWB, with an estimated false-alarm probability of p ≲ 0.02 (approx. 2 σ ). The long timing baselines of the PPTA and the access to southern pulsars will continue to play an important role in the International Pulsar Timing Array.

Keywords

PulsarAstronomyPhysicsGravitational waveIsotropyGravitational wave backgroundAstrophysicsOptics

Affiliated Institutions

Related Publications

Publication Info

Year
2023
Type
article
Volume
951
Issue
1
Pages
L6-L6
Citations
1009
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1009
OpenAlex

Cite This

Daniel J. Reardon, Andrew Zic, R. M. Shannon et al. (2023). Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. The Astrophysical Journal Letters , 951 (1) , L6-L6. https://doi.org/10.3847/2041-8213/acdd02

Identifiers

DOI
10.3847/2041-8213/acdd02