Keywords
Affiliated Institutions
Related Publications
Improved side‐chain torsion potentials for the Amber ff99SB protein force field
Abstract Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accurac...
Optimized Molecular Dynamics Force Fields Applied to the Helix−Coil Transition of Polypeptides
Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly ...
Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field
Biological function of biomolecules is accompanied by a wide range of motional behavior. Accurate modeling of dynamics by molecular dynamics (MD) computer simulations is therefo...
Are Current Semiempirical Methods Better Than Force Fields? A Study from the Thermodynamics Perspective
The semiempirical Hamiltonians MNDO, AM1, PM3, RM1, PDDG/MNDO, PDDG/PM3, and SCC-DFTB, when used as part of a hybrid QM/MM scheme for the simulation of biological molecules, wer...
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structur...
Publication Info
- Year
- 2010
- Type
- article
- Volume
- 99
- Issue
- 2
- Pages
- 647-655
- Citations
- 205
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/j.bpj.2010.04.062