SciPy 1.0: fundamental algorithms for scientific computing in Python

Pauli Virtanen , Ralf Gommers , Travis E. Oliphant , Pauli Virtanen , Ralf Gommers , Travis E. Oliphant , Matt Haberland , Tyler Reddy , David Cournapeau , Evgeni Burovski , Pearu Peterson , Warren Weckesser , Jonathan Bright , Stéfan J. van der Walt , Matthew Brett , Joshua Wilson , K. Jarrod Millman , Nikolay Mayorov , Andrew R.J. Nelson , Eric Jones , Robert Kern , Eric Larson , CJ Carey , İlhan POLAT , Yu Feng , Eric W. Moore , Jake VanderPlas , Denis Laxalde , Josef Perktold , Robert Cimrman , Ian Henriksen , E. A. Quintero , Charles R. Harris , Anne M. Archibald , Antonio H Ribeiro , Fabian Pedregosa , Paul van Mulbregt , Aditya Vijaykumar , Alessandro Pietro Bardelli , Alex Rothberg , Andreas Hilboll , Andreas Kloeckner , Anthony Scopatz , Antony Lee , Ariel Rokem , C. Nathan Woods , Chad Fulton , Charles Masson , Christian Häggström , Clark Fitzgerald , David A. Nicholson , David R. Hagen , Dmitrii V. Pasechnik , Emanuele Olivetti , Eric Martin , Eric Wieser , Fabrice Silva , Felix Lenders , Florian Wilhelm , G. Young , Gavin A. Price , Gert-Ludwig Ingold , Gregory E. Allen , Gregory R. Lee , Hervé Audren , Irvin Probst , Jorg P Dietrich , Jacob Silterra , James T. Webber , Janko Slavič , Joel Nothman , Johannes Buchner , Johannes Kulick , Johannes L. Schönberger , José Vinícius de Miranda Cardoso , Joscha Reimer , Joseph Harrington , Juan Luis Cano Rodríguez , Juan Nunez-Iglesias , Justin Kuczynski , Kevin Tritz , Martin Thoma , Matthew Newville , Matthias Kümmerer , Maximilian Bolingbroke , Michael Tartre , Mikhail Pak , Nathaniel J. Smith , Nikolai Nowaczyk , Nikolay Shebanov , Oleksandr Pavlyk , Per A Brodtkorb , Perry Lee , Robert T. McGibbon , Roman Feldbauer , Sam Lewis , Sam Tygier , Scott Sievert , Sebastiano Vigna , Stefan Peterson , Surhud More , Tadeusz Pudlik
2020 Nature Methods 33,092 citations

Abstract

SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments. This Perspective describes the development and capabilities of SciPy 1.0, an open source scientific computing library for the Python programming language.

MeSH Terms

AlgorithmsComputational BiologyComputer SimulationHistory20th CenturyHistory21st CenturyLinear ModelsModelsBiologicalNonlinear DynamicsProgramming LanguagesSignal ProcessingComputer-AssistedSoftware

Affiliated Institutions

Related Publications

Publication Info

Year
2020
Type
article
Volume
17
Issue
3
Pages
261-272
Citations
33092
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

33092
OpenAlex
1694
Influential

Cite This

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods , 17 (3) , 261-272. https://doi.org/10.1038/s41592-019-0686-2

Identifiers

DOI
10.1038/s41592-019-0686-2
PMID
32015543
PMCID
PMC7056644

Data Quality

Data completeness: 81%