Abstract

Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).

Keywords

Python (programming language)PreprocessorInferenceVisualizationComputational biologyBiologyCluster analysisComputer scienceScalabilityData visualizationData miningGene expression profilingGene expressionGeneGeneticsArtificial intelligenceProgramming languageDatabase

MeSH Terms

Gene Expression ProfilingGene Regulatory NetworksSingle-Cell AnalysisSoftware

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
article
Volume
19
Issue
1
Pages
15-15
Citations
8088
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

8088
OpenAlex
816
Influential

Cite This

F. Alexander Wolf, Philipp Angerer, Fabian J. Theis (2018). SCANPY: large-scale single-cell gene expression data analysis. Genome biology , 19 (1) , 15-15. https://doi.org/10.1186/s13059-017-1382-0

Identifiers

DOI
10.1186/s13059-017-1382-0
PMID
29409532
PMCID
PMC5802054

Data Quality

Data completeness: 86%