Abstract
It is well known that sampling variability, if not properly taken into account, affects various ecologically important analyses. Statistical inference for stochastic population dynamics models is difficult when, in addition to the process error, there is also sampling error. The standard maximum-likelihood approach suffers from large computational burden. In this paper, I discuss an application of the composite-likelihood method for estimation of the parameters of the Gompertz model in the presence of sampling variability. The main advantage of the method of composite likelihood is that it reduces the computational burden substantially with little loss of statistical efficiency. Missing observations are a common problem with many ecological time series. The method of composite likelihood can accommodate missing observations in a straightforward fashion. Environmental conditions also affect the parameters of stochastic population dynamics models. This method is shown to handle such nonstationary population dynamics processes as well. Many ecological time series are short, and statistical inferences based on such short time series tend to be less precise. However, spatial replications of short time series provide an opportunity to increase the effective sample size. Application of likelihood-based methods for spatial time-series data for population dynamics models is computationally prohibitive. The method of composite likelihood is shown to have significantly less computational burden, making it possible to analyze large spatial time-series data. After discussing the methodology in general terms, I illustrate its use by analyzing a time series of counts of American Redstart (Setophaga ruticilla) from the Breeding Bird Survey data, San Joaquin kit fox (Vulpes macrotis mutica) population abundance data, and spatial time series of Bull trout (Salvelinus confluentus) redds count data.
Keywords
Affiliated Institutions
Related Publications
Inference and missing data
When making sampling distribution inferences about the parameter of the data, θ, it is appropriate to ignore the process that causes missing data if the missing data are 'missin...
Applied Missing Data Analysis
Part 1. An Introduction to Missing Data. 1.1 Introduction. 1.2 Chapter Overview. 1.3 Missing Data Patterns. 1.4 A Conceptual Overview of Missing Data heory. 1.5 A More Formal De...
Analysis of Longitudinal Data
1. Introduction 2. Design considerations 3. Exploring longitudinal data 4. General linear models 5. Parametric models for covariance structure 6. Analysis of variance methods 7....
A multivariate technique for multiply imputing missing values using a sequence of regression models
This article describes and evaluates a procedure for imputing missing values for a relatively complex data structure when the data are missing at random. The imputations are obt...
MCMC Methods for Multi-Response Generalized Linear Mixed Models: The<b>MCMCglmm</b><i>R</i>Package
Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in clo...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 87
- Issue
- 1
- Pages
- 189-202
- Citations
- 34
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1890/04-1655