Abstract

We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu/).

Keywords

EnumerationBiologyHaematopoiesisRNAGeneComputational biologyHematopoietic cellCellGene expressionMolecular biologyMessenger RNACell biologyGeneticsStem cellMathematicsCombinatorics

MeSH Terms

BiomarkersGene Expression RegulationHumansPalatine TonsilRNAReproducibility of ResultsSoftwareTissue Culture TechniquesTissue PreservationTranscriptome

Affiliated Institutions

Related Publications

Publication Info

Year
2015
Type
article
Volume
12
Issue
5
Pages
453-457
Citations
13189
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

13189
OpenAlex
326
Influential

Cite This

Aaron M. Newman, Chih Long Liu, Michael R. Green et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods , 12 (5) , 453-457. https://doi.org/10.1038/nmeth.3337

Identifiers

DOI
10.1038/nmeth.3337
PMID
25822800
PMCID
PMC4739640

Data Quality

Data completeness: 86%