Abstract
In this paper, we show how new training principles and optimization techniques for neural networks can be used for different network structures. In particular, we revisit the Recurrent Neural Network (RNN), which explicitly models the Markovian dynamics of a set of observations through a non-linear function with a much larger hidden state space than traditional sequence models such as an HMM. We apply pretraining principles used for Deep Neural Networks (DNNs) and second-order optimization techniques to train an RNN. Moreover, we explore its application in the Aurora2 speech recognition task under mismatched noise conditions using a Tandem approach. We observe top performance on clean speech, and under high noise conditions, compared to multi-layer perceptrons (MLPs) and DNNs, with the added benefit of being a "deeper" model than an MLP but more compact than a DNN.
Keywords
Affiliated Institutions
Related Publications
Boosting attribute and phone estimation accuracies with deep neural networks for detection-based speech recognition
Generation of high-precision sub-phonetic attribute (also known as phonological features) and phone lattices is a key frontend component for detection-based bottom-up speech rec...
Comparing multilayer perceptron to Deep Belief Network Tandem features for robust ASR
In this paper, we extend the work done on integrating multilayer perceptron (MLP) networks with HMM systems via the Tandem approach. In particular, we explore whether the use of...
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models (GMMs) to determine how well ...
Backpropagation training for multilayer conditional random field based phone recognition
Conditional random fields (CRFs) have recently found increased popularity in automatic speech recognition (ASR) applications. CRFs have previously been shown to be effective com...
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
Deep neural networks (DNNs) have recently been achieving state-of-the-art performance on a variety of pattern-recognition tasks, most notably visual classification problems. Giv...
Publication Info
- Year
- 2012
- Type
- article
- Pages
- 4085-4088
- Citations
- 139
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/icassp.2012.6288816