Abstract
A major defect contributing to impaired insulin action in human obesity is reduced glucose transport activity in skeletal muscle. This study was designed to determine whether the improvement in whole body glucose disposal associated with weight reduction is related to a change in skeletal muscle glucose transport activity and levels of the glucose transporter protein GLUT4. Seven morbidly obese (body mass index = 45.8 +/- 2.5, mean +/- SE) patients, including four with non-insulin-dependent diabetes mellitus (NIDDM), underwent gastric bypass surgery for treatment of their obesity. In vivo glucose disposal during a euglycemic clamp at an insulin infusion rate of 40 mU/m2 per min was reduced to 27% of nonobese controls (P less than 0.01) and improved to 78% of normal after weight loss of 43.1 +/- 3.1 kg (P less than 0.01). Maximal insulin-stimulated glucose transport activity in incubated muscle fibers was reduced by approximately 50% in obese patients at the time of gastric bypass surgery but increased twofold (P less than 0.01) to 88% of normal in five separate patients after similar weight reduction. Muscle biopsies obtained from vastus lateralis before and after weight loss revealed no significant change in levels of GLUT4 glucose transporter protein. These data demonstrate conclusively that insulin resistance in skeletal muscle of mobidly obese patients with and without NIDDM cannot be causally related to the cellular content of GLUT4 protein. The results further suggest that morbid obesity contributes to whole body insulin resistance through a reversible defect in skeletal muscle glucose transport activity. The mechanism for this improvement may involve enhanced transporter translocation and/or activation.
Keywords
Affiliated Institutions
Related Publications
Gene Expression of GLUT4 in Skeletal Muscle From Insulin-Resistant Patients With Obesity, IGT, GDM, and NIDDM
In obesity, impaired glucose tolerance (IGT), non-insulin-dependent diabetes mellitus (NIDDM), and gestational diabetes mellitus (GDM), defects in glucose transport system activ...
Impact of Weight Loss on Inflammatory Proteins and Their Association With the Insulin Resistance Syndrome in Morbidly Obese Patients
Objective— Obesity is closely linked to the insulin resistance syndrome (IRS), type 2 diabetes, and cardiovascular disease, the primary cause of morbidity and mortality in these...
The expression of TNF alpha by human muscle. Relationship to insulin resistance.
TNFalpha is orverexpressed in the adipose tissue of obese rodents and humans, and is associated with insulin resistance. To more closely link TNF expression with whole body insu...
Plasma Acylation-Stimulating Protein, Adiponectin, Leptin, and Ghrelin before and after Weight Loss Induced by Gastric Bypass Surgery in Morbidly Obese Subjects
We examined fasting plasma insulin, acylation-stimulating protein (ASP), leptin, adiponectin, ghrelin, and metabolic/cardiovascular risk profile before and 15 +/- 6 months after...
Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus.
Metformin is a biguanide that has been shown to effectively lower plasma glucose levels in subjects with noninsulin-dependent diabetes mellitus (NIDDM). However, its mechanism o...
Publication Info
- Year
- 1992
- Type
- article
- Volume
- 89
- Issue
- 2
- Pages
- 701-705
- Citations
- 185
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1172/jci115638